Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Magnetic Resonance Imaging as a Biomarker for Symptomatic Multiple Myeloma
نویسندگان
چکیده
INTRODUCTION To evaluate the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging (MRI) to discriminate between symptomatic and asymptomatic myeloma in lumbar bone marrow without visible focal lesions. MATERIALS AND METHODS The lumbar spine was examined with 3-T MRI in 11 patients with asymptomatic myeloma and 24 patients with symptomatic myeloma. The fat-signal fraction was calculated from the ratio of the signal intensity in the fat image divided by the signal intensity of the corresponding ROI in the in-phase IDEAL image. The t test was used to compare the asymptomatic and symptomatic groups. ROC curves were constructed to determine the ability of variables to discriminate between symptomatic and asymptomatic myeloma. RESULTS Univariate analysis showed that β2-microglobulin and bone marrow plasma cell percent (BMPC%) were significantly higher and fat-signal fraction was significantly lower with symptomatic myeloma than with asymptomatic myeloma. Areas under the curve were 0.847 for β2;-microglobulin, 0.834 for fat-signal fraction, and 0.759 for BMPC%. CONCLUSION The fat-signal fraction as a biomarker for multiple myeloma enables discrimination of symptomatic myeloma from asymptomatic myeloma. The fat-signal fraction offers superior sensitivity and specificity to BMPC% of biopsy specimens.
منابع مشابه
Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging.
Chemical shift based methods are often used to achieve uniform water-fat separation that is insensitive to Bo inhomogeneities. Many spin-echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time-dependent phase shifts caused by water-fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image...
متن کاملPractical Application of Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Imaging in Minimizing Metallic Artifacts
Iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) is a recently developed method for robust separation of fat and water with very high signal-to-noise-ratio (SNR) efficiency. In contrast to conventional fat-saturation methods, IDEAL is insensitive to magnetic field (B0 and B1) inhomogeneity. The aim of this study was to illustrate the practica...
متن کاملIDEAL at 7T in Mice Using Asymmetric Spin Echo and Gradient Echo Acquisitions
An asymmetric spin echo (aSE) technique was developed to produce uniform, robust fat-water separation in mice at 7T using Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-squares estimation method (IDEAL). The aSE technique had superior image quality as compared to gradient echo IDEAL estimation. Both the spin echo and gradient echo IDEAL techniques resulted in more accura...
متن کاملFast decomposition of water and lipid using a GRASE technique with the IDEAL algorithm.
Three-point Dixon techniques achieve good lipid-water separation by estimating the phase due to field inhomogeneities. Recently it was demonstrated that the combination of an iterative algorithm (iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL)) with a fast spin-echo (FSE) three-point Dixon method yielded robust lipid-water decomposition. As an a...
متن کاملWater-fat separation with parallel imaging based on BLADE.
Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fa...
متن کامل